
A catastrophe associated with the misuse of Fisher's solution for dispersion on a sphere

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1974 J. Phys. A: Math. Nucl. Gen. 7 1251

(http://iopscience.iop.org/0301-0015/7/11/004)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/7/11
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math., Nucl. Gen., Vol. 7, No. 1 I ,  1974. Printed in Great Britain. Q 1974 

A catastrophe associated with the misuse of Fisher’s solution 
for dispersion on a sphere 

B R Watts 
School of Mathematics and Physics, University of East Anglia, Norwich NOR 88C, UK 

Received 10 December 1973, in final form 8 March 1974 

Abstract. Perrin has considered the direction I of a line in a body which is subject to a large 
number of elementary rotations, and obtained an exact expression for the resulting proba- 
bility distribution of I .  Fisher has developed a theory for the statistical analysis of samples of 
I on the assumption that the populations of the I have a certain assumed probability distribu- 
tion. It has since been concluded elswhere in the literature that, since Fisher’s distribution 
is very similar to  that of Perrin, Fisher’s distribution (being apparently simpler than Perrin’s) 
might well be suitable even when Perrin’s is known to have a sounder physical basis. We 
show that this is a false conclusion in at least one situation when the asymptotic form (for 
large variance of I )  is of physical significance. Fisher’s distribution would predict that zero 
electrical resistivity is produced by multiple elastic small-angle electron scattering. On 
the other hand, Perrin’s distribution (exact for this situation) leads to a finite resistivity and a 
simple exponential decay of current when the electric field is removed. 

1. Introduction 

Perrin (1928) gave the first exact solution to the problem of determining the probability 
distribution of the position on the surface of a sphere of a particle which diffuses on the 
surface of that sphere, starting from some fixed point. The problem is formally equivalent 
to the angular probability distribution of a fixed direction in a body which has suffered 
many random elementary rotations ; or to the angular probability distribution of the 
direction of motion of a particle which has suffered many random elementary elastic 
deflections; or to the angular distribution of waves produced when an incident plane 
wave has travelled through a medium which causes random multiple small-angle 
elastic scattering. 

If 8 is the angular displacement, Perrin’s result Pp(O, t )  defined so that Pp(8, t )  d8 
is the probability that the direction lies between 8 and 0+d0 at time t, is given by 

CO 

Pp(O, t )  = 1 (n + f) exp[ - n(n + l)Dt]P,(cos 0) sin 8 
n = O  

where P,(cos 8)  is a Legendre polynomial, and D is the diffusion coefficient. We note 
that (1) has axial symmetry and that 

Fisher (1952) proposed an angular distribution PF(8, t )  in order to develop a theory for 
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the statistical analyses of such measured quantities as the angular distribution of rock 
magnetism : 

K 
pF(6, t )  = ~ exp(K cos 8) sin 8 

2 sinh IC 
(3) 

where K (which would depend on t in a time evolving situation) is a measure of the 
variance of 8. 

Provided that the angular distribution cannot be definitely attributed to a physical 
mechanism equivalent to diffusion, there is no a priori reason for preferring Pp(8, t )  to 
PF(& t).  Indeed since PF(& t )  is simpler in form and has mathematical properties which 
make it more useful for statistical work, one would generally prefer to assume pF(8, t ) .  

It is trivial to show that as K -, 00, pF(8, t )  is confined to the region close to 8 = 0 
and tends to the plane two-dimensional gaussian distribution : 

where 8; = 2 / ~ .  As well as the correct limiting behaviour given in (4), Fisher adduced 
further confirmation for the physical significance of his distribution from a satisfactory 
comparison of (3) with measurements on rock magnetism. 

Roberts and Ursell (1960) obtained Perrin’s result ( 1 )  as the limiting form of the 
solution to the problem of the random walk (Jinite step length) on a sphere. They also 
showed that 

Dt = ( 5 )  

where 8; is the variance of 8 which would have occurred if the diffusion had taken place 
on a plane. Indeed, as one would expect, Pp(8, t ) ,  like PF(e, t )  tends to PG(8, t )  as t tends 
to zero. For as t tends to zero, Pp(8, t )  is only significant around 8 = 0 so we may expand 
P,(cos 8) as a power series 

P,(COS e )  = 1 - gn2 + n)e2 + . . . , 
and, because all the higher-order Legendre polynomials become equally important in 
the limit, may replace the summation in (1 )  by an integral. The result 

then follows directly. 
Since Pp(8, t )  and pF(8, t )  both tend to pG(6, t )  as t tends to zero, and since Pp(8, t )  

and PF(8, t )  both tend to a uniform distribution as t and l / ~  respectively tend to infinity, 
Roberts and Ursell concluded that pF(8, t )  would probably be a satisfactory distribution 
to use mathematically even when the physics dictates the true distribution to be Pp(8, t ) .  
Numerical calculations of the absolute differences between PF(8, t )  and Pp(8, t )  confirmed 
them in their opinion. 

Therefore, on account of the apparently greater simplicity of pF(6, t )  it was suggested 
by Roberts and Ursell (and reiterated by Breitenberger 1963) that for practical purposes 
one may use pF(8, t )  with confidence. 

It is our purpose to show that in one particular application, where Pp(8, t )  should be 
a proper description of the physical situation, the use of pF(8, t )  is an unacceptable 
approximation. The application we refer to is the problem of calculating the equilibrium 
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forward current in a stream ofparticles which move in a region where there is (i) a uniform 
accelerating field and (ii) a scattering mechanism which imparts to the particles very 
small random elastic deflections. The expression for the equilibrium forward current, 
which is derived in the next section, depends on the distribution of directions which 
would be produced after a certain time in an initially parallel beam by the small elastic 
deflections, when the accelerating field is not present. We have thus set up a scattering 
mechanism designed specifically to give an angular distribution equivalent to that 
produced by the random walk on a sphere with very small step. The solution to this 
problem is Pp(O, t ) .  

We should point out that the formal problem described is probably very close to 
the actual situation when electrons are scattered by dislocations in a metal, for we assert 
that dislocations scatter electrons elastically through very small angles. The elasticity 
of the scattering is expected because a dislocation is a static lattice defect with effectively 
infinite mass so far as an electron is concerned. As for the very small angles of scattering 
involved, they result from the long range of the strain field of a dislocation compared 
with the wavelength of an electron on the Fermi surface ; experimental confirmation 
is provided by Terwilliger and Higgins (1973). 

We shall show in the next section that if a steady electric field were applied to the 
dislocated metal, the use of pF(& t )  would predict an electric current which would increase 
indefinitely with time (the catastrophe referred to in our title); but the use of Pp(B, t )  
would predict a finite equilibrium current, a true exponential decay of current when the 
field is switched off and therefore a well defined relaxation time. Thus the apparently 
complicated form of Pp(8, t )  leads to the simplest of all behaviours for the forward current. 

2. Forward current decay from multiple small-angle scattering 

We consider an initially parallel beam of electrons travelling through a medium in which 
they are continually deflected through very small angles in random directions. If there 
is no applied electric field to maintain the original direction of motion, the beam will 
progressively spread out, and the forward current will decay. 

The angular distribution of directions of motion after a time t is given exactly by (1) 
and approximately by (3) .  We define the forward current in the beam to be 

where ](e, t )  is the number of electrons travelling at time t at angle 8 to the initial direction 
8 = 0, and cos 6' picks out the forward component of electric current. Now Z(e, t )  is 
given exactly by Pp(8, t )  or by PF(6, t ) ,  provided Fisher's approximation is valid. There- 
fore, taking F(0,O) to be unity, we have 

whence it may be easily shown that 
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where we have used (4) and ( 5 )  to write IC in terms of Dt. Similarly, using the exact 
expression PP(& t )  we obtain 

Fp(O, t )  = exp( - 2Dt). (9) 

Obtaining (9) is simple if one notices that cos 6 is P,(cos 6) and remembers the orthogonal 
properties of Legendre polynomials. 

We already see that (9), the exact form of the forward current decay, is more simple 
than the approximate form (8) ; but now let us calculate the equilibrium electric current 
produced by a steady electric field E .  If E were switched on at time z = - CO then the 
forward current J(0,  t )  flowing at time z = t is given by 

J(0, t )  = j [: F(0, t - z) dz 
m 

where j d z  is the element of current created by E in the time interval between z and 
z+dz (the constant of proportionality j depends on the dynamical properties of an 
electron), and F(0, t - 5 )  is the factor by which j dz has decayed at time z = t .  Changing 
the variable in (10) by putting T = t - z we may write down two alternative expressions 
for J(0,  t )  

and 

Jp(O, t )  = j JOm exp( -2DT) dT. 

It is evident that JF(O, t )  diverges, that is to say a steady field does not produce a 
finite equilibrium current, whereas J,(O, t )  is equal to j/2D. 

The reason why Fisher’s distribution, though differing only slightly from Perrin’s 
in absolute magnitude, should predict an infinite current must arise from the fact that 
pF(& t )  does not approach the uniform distribution rapidly enough as t becomes large. 

We compare the asymptotic forms of pF(& t )  and PP(& t )  : 

pF(& t )  -, ’[ 1 + (A) cos e] sin e 2 

and 

Pp(8, t )  + )[1+ 3 exp( - 2Dt) cos e] sin 0 (14) 

as t + 00. Thus we see that PF(O, t )  tends to a uniform distribution as l/t, whereas 
Pp(8, t )  goes like exp( - t).  

Therefore although PF(U, t )  and Pp(O, t )  have very little absolute difference, the slower 
rate at  which PF(8, t )  tends to the uniform distribution may lead to serious errors from 
its use in describing phenomena where the behaviour of P(8, t )  at large t is important. 
We should also draw attention to the simple exponential form (9) of the exact solution 
for decay of the forward current when the electric field is switched off. This exact 
solution leads to a unique definition of a relaxation time, which is given by 1/20 in our 
notation. 

Concerning Fisher’s distribution we draw the following conclusion : contrary to 
certain conclusions in the literature, the use of Fisher’s distribution might be expected 
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to lead to serious errors in any calculation where (i) the true distribution has arisen 
from a number of elementary (angular) steps and (ii) the asymptotic form of the distri- 
bution is important. However, we should emphasise that our conclusion is not a 
criticism of Fisher’s distribution when used for the purpose of statistical analysis as he 
intended. For although (i) may often be satisfied approximately, it is most unlikely 
that (ii) would be satisfied in statistical analyses. 
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